newsletter

Obtenez par e-mail toute l'actualité Hortonworks

Une fois par mois, recevez les dernières idées, tendances, informations d’analyse et découvertes sur le Big Data.

AVAILABLE NEWSLETTERS:

Sign up for the Developers Newsletter

Une fois par mois, recevez les dernières idées, tendances, informations d’analyse et découvertes sur le Big Data.

cta

Démarrer

cloud

Prêt à débuter ?

Télécharger Sandbox

Que pouvons-nous faire pour vous ?

* Je comprends que je peux me désabonner à tout moment. J'ai également compris les informations supplémentaires fournies dans la Politique de confidentialité de Hortonworks.
fermerBouton Fermer

Enquête Hortonworks d'évaluation des Big Data

Parrainage

1. Vision & Strategy

Mon entreprise a une vision et une stratégie très limitées en matière de big data.
Les principaux dirigeants au sein de mon entreprise parlent de big data, mais ils se concentrent sur certains problèmes métier et non pas sur une vision à l'échelle de l'entreprise.
An enterprise-wide vision and strategy is taking shape in a formal big data roadmap.
Executive and management teams are aligned on an enterprise big data strategy.

2. Funding

Le financement pour des programmes de big data n'est pas prévu dans le budget ou est inexistant au sein de mon entreprise
Certains projets de big data sont financés dans mon entreprise mais c'est généralement à l'échelle d'un projet et/ou souvent par les budgets du département IT.
Big data programs are a considered in cyclical budgeting processes at the executive or line-of-business levels.
Big data programs are budgeted and funded in executive and business unit levels.

3. Advocacy

Big data program advocacy is limited to IT or other isolated business groups in my organization.
Big data has at least one executive-level sponsor in my organization, most likely a CTO or CIO.
Big data programs are advocated by multiple senior-level executives.
Executive and business managment in my organizaiton are aligned on the value of data as currency, and actively advocate for its use in key business processes.

4. Business Case

The business case for big data in my organizaiton has not been formally established at the business level or enterprise level.
Pilot project(s) in at least one business group have resulted in local business cases for big data investment.
Multiple pilot projects in more than one business unit have resulted in business cases for big data investment.
My business has realized at least one new revenue stream or business model from big data analytics.

Données et Analytique

1. Data Collection

My organization works primarily with structured data, and must manually collect much of the data we store.
We are ingesting some unstructured data from new sources that didn't exist a few years ago.
La collecte de données structurées et non structurées est automatisée au sein de mon entreprise.
My organization routinely seeks out new data sources of all types.

2. Data Storage

Mon entreprise dispose d'une capacité de stockage limitée et nous stockons les données dans plusieurs formats de fichiers, si toutefois nous les stockons.
Nous commençons à comprendre l'importance de stocker toutes nos données d'entreprise mais certaines données sont systématiquement éliminées.
My organization has a unified information architecture and we rarely discard data.
My organization has created a "data lake" or shared data service that pools our enterprise data in a unified architecture.

3. Traitement des données

Our data processing typically involves structured data in manual processes.
We lack a common metadata/naming structure across the enterprise, but metadata standards are emerging at the business level.
Metatdata/naming conventions are aligned to a unified enterprise architecture, and consisently applied.
Our organization has a data processing engine that ingests and transforms data to align to our enterprise information architecture.

4. Analyse des données

My organization's data analysis activities are focused primarily on reporting key business metrics, usually measuring performance.
We dabble in advanced analytics, and those projects tend to have a long time to value.
My organization has a predictive analytics engine and/or the ability to perform real-time analysis.
La qualité, l'exactitude et la valeur de nos données sont évaluées et optimisées de manière formelle et régulière.

Technology & Infrastructure

1. Stratégie d'hébergement

We primarily host our data storage and analytic applications on premise.
Nous étudions ou déplaçons le stockage de nos données et de nos applications vers le cloud, en plus de notre hébergement principal sur site.
Nous recherchons (ou avons adopté) une des meilleures infrastructures d'hébergement hybrides, avec une partie sur le cloud et une autre sur site.
We have optimized our hybrid hosting solution to deliver unified access and consistent speed and dependability.

2. Functionality

We have a traditional data warehouse focused on storage of structured data.
We have at least one big data proof of concept project such as Hadoop.
We have adopted a Tier-2 production class Hadoop cluster and are capable of supporting multiple workloads.
We have a Tier-1 production class Hadoop cluster capable of handling multiple data types from multiple sources.

3. Analytic Tools

Our organization has basic analytic tooling to support canned reporting.
We have adopted analytic tooling to support project-specific objectives.
Centralized resources are made available to business groups seeking fit-for-purpose tools.
Centralized tooling is administered by a big data group supporting various business programs.

4. Integration

Our data infrastructure requires constant maintenance and tuning to support basic storage and access needs.
We see some integration between analytic tools deployed across the organization.
Many of the data tools and resources are integrated across the organization.
Notre infrastructure de données est centralisée et entièrement intégrée.

Organization & Skills

1. Analytic & Development Skills

Our big data skills tend to be located among analysts and other technologists at the business level.
We have in-house talent to support data collection and storage.
Our organization is investing in big data skills that go beyond collection and storage to include data mining and other forms of advanced analytics.
My organization provides training and support for data-related programs across the company.

2. In-house or Outsourced

Nous sous-traitons la plupart de nos activités liées à la planification et à la préparation des big data.
Nous combinons certaines compétences de big data en interne avec une assistance extérieure pour des projets pilotes.
We have core Hadoop and NoSQL skills in house, but rely on external resources for many advanced data capabilities.
We have built an in-house organization with most of the skills required by our big data roadmap.

3. Leadership Model

We currently do not have a centralized analytics group.
We are talking about the potential value of centralizing data and analytics in our organization.
Nous avons créé un groupe central de données/d'analyses qui met l'accent sur un service transversal.
Nous avons un centre d'excellence centralisé dédié au big data qui coordonne et soutient les ressources décentralisées.

4. Cross-functional practices

Most of our data work is done at the departmental level, with little conversation between functional groups.
Business groups routinely communicate about data programs, and share data resources.
Our Hadoop experts and data warehouse experts routinely collaborate in support of cross-functional programs.
We have created a big data steering committee to ensure organizationl alignment to our roadmap and resources.

Process Management

1. Planning & Budgeting

My company has no formal processes for planning big data programs and investments.
La planification des programmes et des investissements dans le big data intervient uniquement au niveau commercial.
Executive and management processes are aligned for annual review and planning around big data investments.
Data is deeply integrated into planning and investment for every business unit, with widely embraced standards for collaboration and workflows.

2. Operations, Security & Governance

My company has basic data security processes in place but undefined processes for data collection and/or access.
Data operations and governance are being discussed and improved with collaboration between IT and some business units.
An enterprise-wide policy and protocol for data collection and access is in place.
My company adheres to enterprise-grade standards for security, back-up, disaster recovery, and access across all public and private cloud data infrastructure.

3. Program Measurement

There is little or no evaluation of the quality or effectiveness my company's data-related programs.
My company is beginning to see decision support processes emerge from big data pilot projects.
We conduct routine cost/benefit analyses and monitor decision processes and outcomes using data.
Performance measurement standards are defined at a company level and applied routinely by centralized leadership.

4. Investment focus

Investment in big data programs are made on an ad hoc basis with little or no ROI analysis after the fact.
Big data investment is focused primarily on data warehouse optimization and justified primarily on the basis of storage and processing efficiency.
Investment is targeting analytic capabilities directed at discovering and developing new value streams.
L'investissement dans le big data vise à faire évoluer les business models des entreprises qui ont émergé des analyses avancées.

Informations supplémentaires

SELECT YOUR INDUSTRY IN ORDER TO FINALIZE YOUR SCORECARD: